
SAND98-1525C

Cofidence in ASCI Scientific Simulation

Confidence in ASCI Scientific Simulations
James A. Ang and Timothy G. Trucano, Sandia National Laboratories, Albuquerque, NM
David R. Luginbuhl, U. S. Department of Energy, Washington, DC

Abstract

The U. S. Department of Energy’s (DOE) Accelerated Strategic Computing Initiative (ASCI) program
calls for the development of high end computing and advanced application simulations as one
component of a program to eliminate reliance upon nuclear testing in the U.S. nuclear weapons
program. This paper presents results from the ASCI program’s examination of needs for focused
validation and verification (V&V). These V&V activities will ensure that 100 TeraOP-scale ASCI
simulation code development projects apply the appropriate means to achieve high confidence in the
use of simulations for stockpile assessment and certification.

We begin with an examination of the roles for model development and validation in the traditional
scientific method. The traditional view is that the scientific method has two foundations, experimental
and theoretical. While the traditional scientific method does not acknowledge the role for computing
and simulation, this examination establishes a foundation for the extension of the traditional processes
to include verification and scientific software development that results in the notional framework
known as Sargent’s Framework. This framework elucidates the relationships between the processes of
scientific model development, computational model verification and simulation validation.

This paper presents a discussion of the methodologies and practices that the ASCI program will use to
establish confidence in large-scale scientific simulations. While the effort for a focused program in
V&V is just getting started, the ASCI program has been underway for a couple of years. We discuss
some V&V activities and preliminary results from the ALEGRA simulation code that is under
development for ASCI. The breadth of physical phenomena and the advanced computational
algorithms that are employed by ALEGRA make it a subject for V&V that should typify what is
required for many ASCI simulations.

Background

The DOE Defense Programs Stockpile Stewardship Program (SSP) calls for judgment-based
confidence as a necessary requirement for eliminating the need for nuclear testing in the U.S. nuclear
weapons program [Larzelere98]. A simulation is considered predictive if it represents a major means
of providing information to a weapons expert in all SSP applications relevant to the simulation, and
the primary (or only) means in specific critical stockpile situations. The goal for this ASCI V&V
program is to develop simulations that are predictive in this sense.

The traditional scientific method is based on a process of observation, hypothesis development,
experimental design, hypothesis test, and iterative improvement. A schematic framework for the
traditional scientific method is shown in Figure 1. For hundreds of years this framework for science
had two foundations, experimental and theoretical. Since the development of digital computers in the
1940’s for the Manhattan Project, we now recognize a third foundation, computational science.

1

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

Figure 1. A framework for the traditional scientific method. This diagram illustrates the iterative
nature of the scientific method and the traditional role for the validation process.

The processes of validation and verification deal respectively with the interfaces between
computational simulations and experimental observations, and computer models and theoretical
models. To illustrate the interactions between these three foundations of science it is useful to
examine the scientific framework shown in Figure 2. This diagram is based on Sargent’s Framework
[Knepel193]. While Sargent’s Framework was developed by the operations research community, this
diagram provides useful guidance in the processes we can use to develop confidence in scientific
simulations. In this framework there are three main objects: physical reality, conceptual models, and
computer simulations, which are respectively, the subject or product of the experimental, theoretical,
and computational sciences. The interface processes between these objects are shown in the outer
ring, and they are supported by the activities shown in the inner boxes along the dashed lines. All of
these objects, processes, and activities are governed by a common need for data validation, i.e.,
assessment of data quality; consistent units, common datum, etc. A comparison of these figures
reveals that he process of model validation in the traditional scientific method framework in Figure 1
expands to encompass the code verification and simulation validation processes and the computer
simulation object that are shown in the framework for the new scientific method in Figure 2. This is
the impact of computers on the traditional scientific method.

2

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

/ ,, I

[a,-//Simulati&7
Predictions

/
,’

k ‘\
\
\

\

ti d
Model

Development

I - . \

Code
Verification

Figure 2. A framework for the new scientific method. This diagram illustrates how computational
science interacts with the traditional ,activities of experimental and theoretical science.

For this paper we use the following definitions which are consistent with those of IEEE,
AI- and the U. S. Defense Department’s Defense Modeling and Simulation Office
[IEEE82], [AIAA98], [DMS096]:

Validation - the process of determining the degree to which a computer simulation is an
accurate representation of the real world.

Verlj?catio~l- the process of determining that a computer simulation correctly represents the
conceptual model and its solution.

“Ver~jication ad Valihtion” or “Vali&tion and Verlj?cation”? It is common to see the

former phrase because chronologically simulations are verljfed before they are validated.
However, because in the ASCI V&V program the most visible process is validation, and a key
element of this program is to coordinate with other DOE Defense Program efforts to obtain
needed validation dat~ we have chosen to use the latter phrase.

3

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

Verification of Scientific Simulations

[Boehm81] has boiled the definition of software verification down to answering the question, “Are we
building the software right?” In that regard, there are several components of a successful software
verification program for ASCI codes. An integral part of establishing confidence in any computer
simulation is to ensure that the software has been developed according to some set of standards and
that the process for development ensures a proper transformation from conceptual model to finished
code. The ASCI V&V program intends to establish a strong verification component along these lines.

This verification component will draw from accepted software engineering practices where possible,
but we will also need to consider the unique aspects of both the domain of interest and the advanced
computer architectures on which the simulations will be run. For the purposes of this paper, we will
consider the “domain of interest” to be “scientific simulation,” by which we mean simulations of the
complex, physical processes of the real world. It could be argued that this is not specific enough to
take into account all the simulations being developed in ASCI, but it will suffice for our discussion of
verification below.

Software Engineering Practices

Obviously, there are many verification processes that transcend specific domains. Good software
engineering processes apply whether one is developing a small database application or a large,
complex, real-time embedded system. Indeed, scientfic computing is hardly immune from the types
of problems that result from the lack of a well thought-out V&V process. [Hatton97] documents
some dramatic error statistics derived from his broad evaluation of scientific software.

Two principles taken from [DMS096] are worth calling out to guide the V&V effort. The first
principle is that “verification and validation ..should be an integral part of the entire life cycle.”
This principle is exemplified by Figure 3, adapted from [Ould96], which they use to “provide a
framework for testing.” Note in the figure that the output from each component activity of the
development of the software corresponds directly to a deliverable during the testing of the software.
One could infer from this view that planning for acceptance testing should take place during
requirements analysis, and so on.

The key point is that verification efforts cannot take place only at the end of code development.
Physical scientists and engineers have a reputation, maybe unearned, for not employing the most
systematic of processes in code development (see [Wilson96], for example.) But “code and test, code
and test” is not an effective approach to the development of highly reliable code, especially when the
stakes are as high as they are in ASCI.

The second guiding principle, which derives from the first, is that “verification and validation must
be planned and documented.” An integral part of ASCI’s V&V effort is the requirement for each
development team to develop a detailed V&V plan.

4

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

Figure 3. A lifecycle approach to software development and testing [Ould86].

Verification Techniques

Most of the “tried and tree” techniques for software verification should certainly be considered for
verifying ASCI software. Space limitations prevent a discussion of the entire litany of techniques
available, but some techniques merit special mention. We will use the high-level taxonomy of V&V
techniques adopted by [DMS096]: informal, static, dynamic, and formal techniques.

Informal Techniques

Many informal techniques, such as walkthroughs, reviews, and inspections, should be easily adaptable
to ASCI software development, having been proven over the past twenty-five years to add significant
value to all classes of large software projects [O’Neil197]. These “people-oriented” approaches to
evaluation are applicable at any stage of software development. The challenge in evaluating ASCI
software at this level is to ensure the proper level of domain expertise (i.e., the physics of nuclear
weapons) among the reviewers.

Static Techniques

Static techniques (e.g., fault analysis, semantic and syntactic analysis, structural analysis) are probably
the easiest to introduce into the ASCI software development process. Static analysis lends itself to
automation so to the extent that ASCI has adopted these tools, static analysis is already accepted as a
part of ASCI V&V (indeed, compilers themselves comprise one avenue of static analysis, i.e.,
syntactic evaluation (DMSO96]). The value of static techniques is made all the more apparent in
[Hatton97]. His static analysis of a variety of scientific software revealed dramatic results in terms of
faults per thousand lines of code. One point of interest: “nuclear engineering” codes were among the

worst in number of faults.

5

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

Dynamic Techniques

Dynamic techniques involve actually exercising the software developed and include various types of
testing (integration testing, acceptance testing, regression testing), debugging, and assertion checking.
The key to all good testing (and this applies no less to ASCI codes) is in test planning as described in
the second guiding principle above. Thus, for example, acceptance test development should begin as
requirements for the software are created. Further, integration tests should arise out of the definition
of module interfaces.

Regression tests are of special interest in ASCI since software is expected to run on several different
platforms, each with a potentially different architecture, Regression tests are necessary to ensure the
software is still correct when ported to a new platform. Regression testing also aims to control a
common problem in developing scientific software. Improvements in one physics module might lead
to an error occurring in a different module.

In fact, computer architecture is a special consideration for the tools that implement static and
dynamic techniques (debuggers, for instance). The subtleties of running a code on a large number of
coordinated computer nodes must be accounted for in the development of static analysis tools. Even
for dynamic analysis tools, repeatability of results could become problematic, if problem setup does
not assign the same computations to the same nodes each time.

Formal Techniques

Formal verification methods are the most difficult to introduce in any development effort.
Combinatorial explosion usually presents a formidable barrier to a comprehensive approach to formal
methods, thus the size and complexity of ASCI codes becomes a factor. To this we add the difficulty
of applying techniques based on discrete mathematical structures to a simulation of continuous
physical processes.

One approach to addressing the problem of size is to consider whether there might be critical portions
of the software to which some sort of formal verification technique might be applied. This still leaves
us with the problem of modeling continuous mathematics with discrete structures. An avenue of
research and future application might be to consider the application of hybrid automata
[Henzinger96], which attempt to combine continuous mathematics into finite structures, to scientific
software.

Validation of Scientific Simulations

Historically, design and engineering codes were used as tools to support new weapons development
and nuclear testing within the U. S. nuclear weapons program. These previous computational
simulation and modeling capabilities for nuclear weapons were empirically based and, due to
computer hardware limitations, most weapon assessments were restricted to two-dimensional or
crudely zoned three-dimensional models.

With the cessation of U. S. nuclear testing and no requirements for new weapon production, the role
of computational simulation and modeling has changed. As the stockpile ages, changes in weapon
components and materials will require improved physical models and simulations. Efforts to extend
the lifetime of the stockpile rely heavily on our ability to perform predictive, integrated, three-

6

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

dimensional computer simulations to assess the stockpile. Predictive three-dimensional simulation
codes require improved physics, materials, and engineering models that must be validated by
experienced weapon scientists and engineers.

Within the new simulation-based SSP environment, a primary driver for the experimental program is
to provide validation data that will be used to establish confidence in simulation capabilities which, in
turn, will be used to certify weapons. This confidence will be established by exercising the feedback
loop between simulations and experiments as shown in the upper left-hand portion of Figure 2.
Experiments must not only assist in the certification of components and systems, they now must be
designed to provide the necessary information to establish confidence in predictive simulation codes
over a broad parameter space. Conversely, new experiments will also serve to establish regions in
physical parameter space where confidence in simulation results is degraded. This new requirement
calls for increased fidelity in the collection of experimental data to exercise the regimes of physics that
our more powerful and predictive three-dimensional codes can provide. Thus, our framework is
shifting from certification of point designs to predictive confidence in a larger design space.

Requirements for Validation Data

The comparison and analysis of an ASCI simulation with a nuclear event or weapon stockpile-to-
target-sequence test requires access to a large amount of data. This includes not just the results of the
test diagnostics, but detailed information about all of the device parts, details of the diagnostic system,
and data on non-nuclear calibration experiments. As indicated in the middle of Figure 2, all of these
data need a careful assessment of their quality.

Physics, materials, and engineering models are needed for the SSP, Data to validate these models will
come from a variety of sources. Physics and theoretical models that reduce reliance on empirical
approximations will need experiments specifically designed to validate these models, as well as
calibrate key parameters used in their implementation. Measurements made in the process of
monitoring the health of the U. S. nuclear stockpile will be required to validate materials aging models
needed to predict the lifetime of weapons components. Manufacturing process simulations will
require data from manufacturing operations and require interfaces to design simulations to support
concurrent engineering design. Past nuclear and non-nuclear test data that include test failures and
mysteries, tests that have large sensitivity to physics and materials models, and tests that had different
weapon component manufacturing processes and techniques will provide valuable validation data to
establish the highest confidence in future weapons simulations,

The V&V teams for these codes will be composed of code developers, software engineers, analysts,
theoreticians, experimentalists and designers, as well as experienced users of weapons simulation
codes, to insure that effective and relevant V&V is carried out. Meeting stockpile assessment and
certification requirements will naturally lead to code user acceptance and confidence.

The V&V program derives its requirements from existing stockpile drivers to help us identify the
specific validation tasks required to establish confidence in our computational capabilities for
stockpile assessment and certification, We expect that some data that will be required will be of a
different form and fidelity than we have historically required. Experimental validation data needs will
include:

7

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

. High-fidelity measurements of material physical and chemical properties that are used as
inputs to simulation codes

. High-fidelity experiments for validation of code sub-models/models and coupled phenomena
through laboratory and facility tests

. Integrated code validation, where possible, through comparison against past nuclear test data,
full system tests and stockpile surveillance data

Types of Validation Data

There are several sources of data for validation of ASCI simulations. They will be discussed below as
archived data from nuclear tests, archived data from non-nuclear tests, fundamental physics
experimental data, integrated system certification tests, and stockpile surveillance data. Obviously
data from past experiments and certification tests could be considered part of the archive of non-
nuclear tests. For this paper, we consider these separate categories to focus on new validation data
that could be obtained by providing guidance and recommendations to the relevant experimental and
archiving programs for future data collection opportunities.

Archived Data from Nuclear Tests

The archive of data from nuclear tests is a unique resource for validation of codes to simulate nuclear
weapons performance and safety, and components and system reliability in hostile nuclear
environments. This body of data provides an important link to the historical test-based certification
process, and thus is a key to assuring confidence in the transition to a simulation-based certification
process. Work on V&V should generate useful input to nuclear weapons archiving projects on what
data are most important for validation.

An important element of validation is robustness to develop confidence in predictions for a range of
problems, not just for the validation test suite. This is particularly needed for validation against
nuclear test data because systems of interest are unlikely to match a specific test configuration.
Confidence in robustness can be gained by using the same code to perform calculations and compare
results with data from a number of nuclear tests.

Archived Data from Non-Nuclear Tests

Assessments of nuclear performance of devices depend not only on evaluation against archival
nuclear data, but also on types of archival non-nuclear data. During development of a weapon system,
a series of weaponization tests characterized the fill-system response to storage, transportation, and
stockpile-to-target-sequence requirements. And finally, the physics underlying the code
implementations relies on a large database of physical data characterizing the material behaviour in
the weapon.

As with data from nuclear tests, the engineering simulations can be partially validated against small-
scale and component tests. However, demonstrating confidence in engineering system simulations to
address stockpile stewardship issues usually requires validation against large-scale system tests.
Examples are integrated system flight tests, hostile x-ray environment tests, and large-scale target
penetration tests. Types of measurements from these tests for validation of simulations of the nuclear
explosive package include acceleration, stress, strain, and damage histories and measurements of

8

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

delivered system function. Non-nuclear component test examples include arming, fuzing, and firing
response to hostile x-ray or abnormal fire environments, and re-entry vehicle response to deployed
vibration and thermal conditions.

Another large body of archival data is the physical properties database underlying all of the nuclear
and non-nuclear modeling. The physical material property data (EOS, opacity, cross sections,
constitutive data) also requires assessment based upon the requirements for validation stated above.
The codes used to evalute and generate these physical databases will also require validation just as the
hydro, nuclear and engineering/weaponization codes.

Fundamental Physics Experimental Data

New experiments will be required to test ASCI simulations in three-dimensional regimes for which
previous data are not appropriately detailed, or does not exist. Current experimental capabilities have
evolved to include more extensive or more accurate diagnostics on traditional types of experiments as
well as the development of new kinds of experiments generating completely new types of data. For
example, traditional diagnostics on certain shockwave physics tests have been extended to cover a
more complete range of the performance regime of devices and new diagnostics have been added to
measure specific physical phenomena with greater accuracy. Completely new kinds of experiments
have extended the utility of shockwave physics experiments in characterizing complex behaviour. An
example is the possible application of advanced holographic techniques to collect three-dimensional
experimental data at very high resolutions [Ang93].

Coupled computational/experimental activities will play an important role in the design and
optimization of these high-fidelity experimental programs to ensure that experimental conditions and
instrumentation are appropriate for the generation of the data that is required for code validation.
Examples of laboratory-scale experiments include those that capture spatially, temporally, and
spectrally resolved data to compare with multi-dimensional simulation results. Simulation results can
also be used to design lab-scale experiments to capture data around boundary layers, critical points,
and other loci of relevant physics. Laboratory scale experiments at new kinds of facilities such as gas
gun, high energy laser, and pulsed-power experiments provide new types of data in physical regimes
relevant to nuclear weapons, and provide opportunities for understanding physical phenomena in
three-dimensional and dimensionally fine detail not available during weapon development.

System Certification Test Data

The V&V program will provide the ability to identify and follow through on opportunities for adding
diagnostics and instrumentation to fill system certification tests that would help capture unique data
that might otherwise be lost for validation purposes. With the increased complexity of the required
experiments, due to the need for higher fidelity data, and restrictions on the number of laboratory and
full system tests, the role of simulation in the design of experiments is more important. Simulation
results can be applied to estimate data acquisition requirements by providing experimenters with
diagnostics requirements for instrumentation dynamic range, sensor locations/orientations, data rates,
etc.

Stockpile Surveillance Data

Data collection is of particular importance in assessing the condition of aged materials, components,
and systems in the stockpile. Modeling of aging in materials has been limited at least partly by a lack

9

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidencc in ASCI Scientific Simulations

of aging data. The ASCI materials aging application development teams have ongoing interactions
with the stockpile surveillance program that is monitoring the health and status of the U. S. nuclear
weapons stockpile. The V&V program will build on these interactions to obtain the data that we need
to validate our aging simulations. These aging simulations can point out problems to look for, and
may even suggest measurement techniques and ranges for future surveillance activities.

Needs for Comparison of Simulation Results with Validation Data

High consequence computing is one of the implications of simulation-based stockpile stewardship.
Because of this key role, the V&V program needs to move aggressively from the past paradigm of
code calibration, i.e., adjustment of modeling parameters to attain agreement with experimental data,
to a more rigorous paradigm of validation science.

Validation science, which relies upon the development and deployment of a host of advanced tools
and methodologies, will aim to accomplish the following objectives:

● Encourage the application of techniques for improved computationally based, quantitative
experimental data - calculated data comparisons. The same goal can be achieved for code-to-code
comparisons using these tools.

● Achieve improved and quantitative understanding of the selection of data most appropriate for the
code validation task.

. Determine more precise and quantitative implications of accurate or inaccurate computational
comparison with the selected experimental data for the code validation task.

● Minimize the impact of human error on the computational component of the SSP through
application of the code validation process. .

Uncertainty Quantification

One approach that can provide a systematic foundation for validation science is uncertainty
quantification (UQ), This is the technology for quantitatively estimating the uncertainty in the output
of code calculations from characterizations of input uncertainty, including underlying model
uncertainties and uncertainty in the existing validation database. One of the results of applying UQ is
that confidence in the results of code calculations can be quantitatively assessed.

In addition, UQ can serve as an organizing principle for the code-experimental data comparison
activity. For example, UQ provides intrinsic data about parts of a calculation that contain the greatest
degree of uncertainty. It is then logical to drive the validation activity, for that particular application
with those experimental data that are most relevant to that uncertainty contribution. If these data do
not exist, this also provides a rigorous rationale for guiding new experimental activity. UQ also
suggests rigorous strategies for extrapolating code confidence from specific, successful data
comparisons. We anticipate that additional work will have to be performed to make UQ as effective
as possible in the ASCI code validation activity.

We will discuss UQ in greater detail below when we discuss specifics of the V&V activities
associated with the ALEGRA code.

10

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confdence inAS(Xscientific Simukd.ions

Challenge Problems

Ultimately, the development of conzabzce in the predictive capability of ASCI simulations will rely
on more than just the systematic, rigorous validation and verification of codes and underlying physical
models. Real confidence will only be achieved through the application of ASCI simulations to make
predictions of “Challenge Problems” [McMillan96]. Cotildence evolves by making iterations around
the new scien@c method framework in Figure 2. The V&V program will also work with the
experimental elements of the SSP to establish structured challenge problems that provide an
opportunity for published (within the stockpile stewardship community) pretest predictions.

A carefidly designed challenge problem component will be significant to completing the shifl fi-om
test-based to simulation-based certification. The use of simulations to make pretest predictions that
can subsequently be validated or refbted with new experimental test results involves risk. In fact, the
expectation is that challenge problems will lead to instances of spectacular simulation failures, but
these failures are analogous to test failures at the Nevada Test Site (NTS). The potential for success or
failure at the NTS provided an important cultural and sociological aspect to the initiation of nuclear
designers with nuclear testing that validated designers as well as their designs [Gusterson96]. The
transition from test-based stockpile stewardship to simulation-based stockpile stewardship must
acknowledge thk issue. Challenge problems will form the new proving grounds for the next
generation of designers and weapons analysts.

Often, we learn more from our ftilures than our successes. [Petroski85] even notes this fact in the
subtitle of his popular book To En~”neer is Human. The eventual outcome of simulation failures will
be improvements in the simulations and ultimately, increased confidence in both the validated domain
of a simulation capability and increased understanding of its limits. Note that if challenge problems
never lead to simulation failures, we need to go back and find more difficult problems. It is by
overcoming challenge problems that we will gain demonstrable confidence in our simulations.

V&V of the ALEGRA application

Introduction

ALEGRA V&V activities use a mixture of formal and informal procedures, rigorous constraints, and
a wide variety of verification and validation problems. We will attempt to capture the scope of our
thought about these components below, rather than attempt a complete discussion of the specifics.
The reader should be aware that we are still attempting to learn how to transform some of these
admitted] y abstract concepts into concrete methodologies applicable to ALEGRA. In this sense there
is a very real research component in the ALEGRA V&V project.

ALEGRA Summary

A brief summary of ALEGRA can be found in [Summers96]. As discussed there, ALEGRA is a
multi-material, arbitrary-Lagrangian-Eulerian (ALE) strong shock wave physics code under
development at Sandia National Laboratories, It combines the features of modern Eulerian shock
codes with modern finite element Lagrangian codes. Basic finite element ALE shock hydrodynamics
is also supplemented by a mesh refinement project based on finite element h-adaptivity principles. In

11

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

addition to the basic
included in the code
hydrodynamics, and

Colf]dencz in ASCI Scientific Simulations

shock wave physics algorithms, a variety of coupled physics capabilities are
development effort, including coupled electro-mechanical response, magneto-
radiation transport. Successful application of the code requires more than

accurate implementation of solution algorithms for these kinds of physics. A variety of accurate
material models - equations of state, constitutive and fracture models, thermal conduction behavior,
radiative opacity, electrical resistivity, plasma transport coefficient, piezoelectric and ferroelectric
material descriptions, and others - must also be implemented, tasks which can easily be as daunting as
the fundamental algorithm development when extreme levels of accuracy are required.

ALEGRA is written predominantly in the C+E programming language. We have also incorporated
various Fortran-based models and libraries. The basic development of ALEGRA is performed on a
variety of serial workstations. The code development team targets distributed-memory massively
parallel (MP) computers for its primary applications platforms, including ASCI class MP computers.
Approximately fifieen people currently write code for this project. The primary development
environment is the SPARCworks environment on SUN workstations.

To better understand the approach of the ALEGRA project to validatio% it is important to emphasize
that ALEGRA is in some regards a tightly woven umbrella for a variety of physics code development
projects. This is shown in Figure 4. The key projects that should be recognized for this discussion are
the strong shock wave physics ALE core project, a mesh refinement project called HAMMER a
coupled electro-mechanics project called EMM4 and a radiation-magneto-hydrodynamics project
called HYRUM. The object-oriented paradigm that runs throughout the project is essential for
managing such a complex project effectively. The recognition of the physics dependencies and
independence of these projects is also critical for understanding the bottom-up and top-down paths for
validation in this environment. We will return to this in more detail in the validation section below.

Arbitrmy h-refinement Electromechanics Radiationmagneto-
Lagrangian-Eulerian mesh adaptivity hydrodynamics
strong shcdnvave

Figure 4. ALEGRA is a set of projects under rather tightly integrated development.

Verification Approach for ALEGRA

In terms of the verification tectilques described above, the ALEGRA project is pursuing the
following approaches:

. The application of static and dynamic fault analysis tools for assessing program correctness. For
example, we use a commercially available tool set for petiorming static and dynamic fault
checking, as well as support tools for testing and test management, provided by Rational Software

12

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Cotildence in ASCI Scientific Simulations

●

●

●

●

●

●

●

Corporation [Rationa198]. In particular, we use one tool available in this suite for static fault
testing called Puri~@ [Rationa198]. This is a comprehensive run-time code error and memory
leak detection product.

We are interested in took to better inform our decisions regarding test problem suites. We are
interested in extending our understanding of coverage to include “path” coverage. We discuss this
issue in greater depth below.

We are interested in safe language subsets and a recommended “style” for floating point C~
implementations of the complexity of ALEGRA (over one hundred-fifly thousand lines of C+E,
perhaps as much as one million lines of auxiliary code written in Fortran and C). To our
knowledge there have been no discussions of safe C+E subsets appropriate for floating point
implementations along the lines of Safer C [Hatton95].

We are currently applying the ClearDDTSTM configuration and change management and bug
tracking system for managing code bug reports and their resolution. Thk is a commercial web-
based tool [Rationa198].

We seek useable “standards” for soflware engineering that are applicable to ASCI scale scientific
soflware. At this time, the ALEGRA project is not working to formal standards, suchas1S09000
[Sanders94] or the Software Engineering Institute Capability Maturity Model (CMMSM)
[Ginsberg95].

We use informal verification techniques. However, some of the more rigorous methods, such as
formal sofiware inspections, are used only irregularly. It is quite common on large scientific code
projects like ALEGRA to rarely use formal software inspections. This is not a statement that we
believe that such inspections are not usefhl, but rather a statement of historical fact. Systematic
design and code walkthroughs and reviews have been regularly applied when major architectural
changes or additions to ALEGRA have been suggested.

No formal verification techniques are applied in the ALEGRA project, except those that may be
implicit in tools like Puri@TM.

Finally, we are also concerned with hardware reliability issues. At this time, there is no formal
hardw~e testing peflormed by the ALEGRA project as a rigorous part of the testing process. This
will likely change at some point in the fiture, but it is not clear at thk time exactly what will be
done. Under this we also include issues about the verifiability of operating systems and system
libraries, as well as language environments.

Verification Test Problems and Procedures

Dynamic techniques for verification remain the most important component of the ALEGRA
verification process. Ideally, we would like to define a series of test problems or procedures, each of
which tests a well-characterized block of code, here simplistically referred to as a “module.” The
schematic representation of this is seen in Figure 5, where we show a selected test problem logically
connected to a set of modules. We would like the modules arranged in order of importance, akhough
how to do this is not especially clear in many cases. There are two ways that these dependencies can
be made more elaborate, resulting in more systematic testing of the code implementation. In the first
case, we can refine the granularity of the modules. For example, we might recognize that Module 1
contains 4 other key sub-modules. We could then attempt to design problems that test those sub-

13

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Cofildence in ASCI Scientific %mdations

modules, which moves us towards a “component testing” framework. We refer to this as increasing
the precision of the test problems that accomplish this. The effkct of this is to refine Figure 5 into a fm
more complex tree of code modules. The ultimate conclusion of such an approach would be to have a
test problem for every executable line of code, an obviously infwsible and undesirable strategy. The
art (and we would like to make it a science) is to strike the best balance between detail and effort. As
always, the implied goal is not so much some kind of “proof’ that the implementation is correct, as it
is a continuing improvement of the correctness of the code.

Figure 5. Schematic representation of the module dependence for a verification test problem.

As a second strategy, we might also consider the possibility of testing flow paths through the code. In
other words, the diagram in Figure 5 would then expand to be a network diagram of perhaps amazing
complexity, in which the flow paths among the modules are also suggested. We would then seek to
also rank order the flow paths by importance as well.

Combining both views - module granularity and flow path characterization - leads to rather
improbable effort for testing the code. Nonetheless, this is a logically correct way to test ALEGRA.
The key to being able to perform anything like this testing is to have appropriate metrics for
measuring module and path importance, and to have tools that allow us to determine coverage. A
rather unrefined zeroth order approach for assessing importance is to simply accept that the code
architects and developers have a good notion of the most important modules to test first. Flow paths is
a rather more difilcult topic, which we will not address in this paper. To assess coverage, ALEGRA
utilizes PureCoverageTM ~tiona198], which at least provides information about software coverage
provided by a given test or set of tests. It is not clear that this tool in itself allows us to easily
quantitatively assess either particularly fine levels of granularity or flow paths.

Regression Testing

ALEGRA utilizes regression testing with a suite of around 100 problems. Recall ~EE82], that
regression testing is used to test implementation stability. The regression test suite is applied before
code check-ins, to insure that the regression tests provide numbers that are the same as prior to the
implementation of the new code. Thk is straightfonwu-d in principle, but somewhat dlfflcult to
manage in the context of ALEG~ especially for an MP environment. In addhio~ applying
PureCoverageTM we have found that we are currently only covering approximately 45% of the code
with our regression test suite. It is obvious at this point that to achieve

14

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

greater logical coverage, as

Confidence in ASCI Scientific Simulations

well as to control the potential for exponential growth of CPU time spent in regression testing, we
must apply a component testing framework, hence moving to finer granularity in this testing.

It is wise to keep in mind that “stability” in the meaning of regression testing is a neutral concept:
regression testing asks less about the actual accuracy of the answers to the regression tests than it does
about their invariance under new code implementation. This conflicts somewhat with the overall
goals of a physics code development project to constantly improve solutions. The ideal world would
be to have only regression tests that are also correct in a frozen sense. In practice this is somewhat
surprisingly difficult to achieve for a code such as ALEGRA. A much broader suite of test problems
is required.

Verification Problems for Scientific Codes

Verification problems properly demand total concern with accuracy of solution and implementation.
Standard general classes of verification problems for ALEGRA include (1) “analytic” test problems,
(2) problems which test known constraints (geometric symmetry, physical conservation laws,
boundary conditions, and so on) and (3) carefid and controlled comparisons with other computer
simulations for more complex problems. We utilize all three general classes of verification problems.

We have a wide variety of verification problems, varying from problems that are close to component
or unit tests to rather integral test problems. These problems tend to be aligned along the lines of the
ALEGRA subproject diagram in Figure 4. Verification problems exist for all of the major categories
of the project, the total number being on the order of 150 at this time. Enforcement of diagrams like
Figure 5 for each of these problems is rather weak at this time. We intend to strengthen our
understanding of the module links with time.

One component of the suite of verification problems is simply a closure of the regression test suite to
the point where we know that all of the problems are giving correct answers. There are simple
distinctions that may be helpfil. A regression test problem may run a problem for only a few cycles,
while its fill verification counterpart may run the problem to a fixed time at which comparison with
an analytic or other mde solution can be per!lormed. Also, a regression test may use a less demanding
version of a problem, while the verification version may be the most demanding version of the
problem that we can define. We typically are fu less concerned with the amount of time it takes to
execute verification problems. Verification problems are typically executed in regular fashio~ but
they are not necessarily executed upon code check-in every time.

In an attempt to do a better job of defining “importance” (as mentioned above), we are attempting to
rank verification problems in importance. We are beginning to use an arbitr~ scale of 1 (least
important) to 4 (most important) to weight problems. We are also attempting to quanti~ our
understood performance on given problems using the same scale: 1 (poor) to 4 (good). It is not easy to
assign either importance or performance on certain problems. We are advocating the use of groups
(perhaps containing a code developer, an “expert” who could be an ALEGRA analyst or simply
someone experienced in the use of codes for solving similar problems, and a peer reviewer) to help
establish these measures for given problems. Much of our concern revolves around our observations
that complex code projects similar to ALEGRA can often waste effort on solving selected verification
problems with increasing fidelity that turn out to be relatively unimportant as implementation tests.
While tools - such as coverage analysis - may help us, we feel that it is important to at least attempt to
establish consensus about what the most important problems might be and what current ALEGRA

15

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Contldenee in ASCI scientific Simulations

ped?ormance on those problems is. This then contributes to our ability to more rapidly focus
improvement efforts on only important problems. This is also a theme that we will emphasize in our
discussion of validation problems below.

Sensitivity Analysis

We view sensitivity analysis - quantitative measures of the sensitivity of the key variables in a solution
to code inputs and algorithmic parameters - as a tool that can contribute to assessing importance, For
example, there are many potential ways of testing the ability of ALEGRA to calculate a strong shock
wave in a plasma. In a “real application”, a sensitivity analysis might reveal that the solution depends
most importantly on only a few selected parameters. Combined with a sufficiently detailed coverage
analysis, this information can provide a map of the most relevant modules, flow paths, and the most
important parameter dependencies. Verification problems that have similar use of these modules, that
have similar flow paths, and that have similar sensitivities to parameters can then be weighted to be
more important for testing implementations for this application than verification problems that are
poorer approximations to these constraints. In additio~ quantitatively understanding sensitivities

allows us to logically refine the implication of given verification problems, thus increasing their
apparent leverage on implementation correctness issues.

Stating this is one thing, but implementing tools that allow us to realize this vision is something else
again. There are several approaches to performing sensitivity analysis, both deterministic and non-
deterministic. It is beyond the scope of this article to discuss this in detail. However, we state that we
are currently implementing a tool [Tong97] that will begin to provide us with sensitivity analysis
information using a non-deterministic framework. We feel that this also happens to be an advantage
for going the next step and addressing uncertainty quantification (see Validation below).

Validation Approach for ALEGRA

Our overall approach to validation in ALEGRA is governed by the general requirements stated above:

. A logical separation must be maintained between activities and goals aimed at verification and
those aimed at validation.

. Experimental data are required for validation of ALEGRA.

. Code comparisons are problematical at best when used for validation of ALEGRA.

. Explicit intent to “certi~’ or “accredit” the use of ALEGRA for its intended applications is a goal
of the validation process. We remind that reader that a usefid definition of certification is
“Certification is the formal decision that a model or simulation is acceptable for use for a specific
purpose.” [DMS096] The goal of certification is completely dependent upon the intended
application and is, therefore, very narrow in scope.

. Validation should be aimed at breaking ALEG~ as well as determining that ALEGRA is
accurate within specified regimes. It is easier to accomplish this task when a high petiormance
experimental program is integrated within the structure of the code development project. We
currently have experimental activities at Sandia associated with ALEGRA validation that provide
this kind of scope throughout the entire project diagram in Figure 4.

16

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Contldence in ASCI Scientific Simulations

. We are engaged in the process of aligning our validation requirements with the data definitions
given above. This requires refining the detailed breakdown of stockpile requirements for
ALEGRA into validation requirements, an effort that is progressing at the current time.

Our approach to pedlorming validation on ALEGRA is quite similar in spirit to our approach for
verification. The focus of our validation concern is now on physics, however, rather than
implementations. A diagram similar to that in Figure 5 can be drawn for validation in which
problems induce connections to “physics” rather than modules. We have included such a diagram for
emphasis in Figure 6. Agaiu this diagram implies that the physics connections are somehow rank
ordered in terms of importance. The issue of granularity also emerges here. Typically, coarse
granularity suggests a focus on a more integral kind of physics. Finer granularity suggests passing to
more specific physics.

Figure 6. Schematic representation of the physics dependence for a validation test problem.

Validation Problems

The largest part of our validation process is studying validation problems, so we will focus the
remainder of our discussion on this aspect. A validation problem study is actually a complex and
typically difllcult study, which requires a carefil assessment of a set of experimental data as well as
reasoned conclusions about the physical quality of a calculation. We believe that a team of people is
required to do this right. A reasonable group of people would include: a problem owner, one analyst
(or more) responsible for perllorming ALEGRA simulations of the proble~ a code developer, a
person capable of writing an acceptance requirement that bears on requirements for the quality of the
simulations, and a peer review person (preferably tlom another code project who is expert in
simulations directly or indirectly related to the problem under discussion) for benchmarking. It would
also be worthwhile to require the experimenter who generated the data to participate in this team. We
assume that such a group of people could spend from 6 months to one year filly assessing the
performance of ALEGRA on a given validation problem.

We are in the process of defining a variety of validation problems, based on the above-mentioned
validation requirements, for all of the major physics components of the code. Avery high level view
of the organization of these problems is most conveniently conveyed in terms of where we can acquire
data. Validation data for the strong shock wave physics component includes data from time-resolved
shock wave physics experiments performed at Sandia and other laboratories, classic compressible gas

17

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Cotildence in ASCI Scientific Simulations

dynamics experimental dat~ data from a variety of military ordnance applications, including long-rod
penetrators and conventional explosives, and hypervelocity impact data recommended by the
hypervelocity impact community. These data basically provide an ensemble of shock wave data that
encompass most of the dynamic compression and release regime that ALEGRA is concerned with and
which is accessible to laboratory experiments. We are also in the process of generating specific data of
interest for particular applications through specially designed experiments at Sandia. Certain data are
available for the electro-mechanics component of ALEG~ and will also continue to be collected in
the fhture. As far as the radiation-magneto-hydrodynamics component, a prime provider of validation
data here is the Sandia fast Z-pinch programs. Challenge problem activities will evolve from current
experimental efforts at Sandia.

Integral versus Specific Validation Data

There is an important balance that must be attained between integral and specific validation tests. For
example, in ALEGRA an integral application might be to model the explosion Of a supernova.
Integral applications are often the most important applications for scientific codes. This places great
weight on finding validation problems, and reasonable data, that operate in such a regime. However,
integral problems are also weak in and of themselves because they do not effectively validate in a top-
down manner. In other words, it would be very diflicult to infer the reality of the shock wave
calculations in ALEGRA from comparisons with light curve data tlom real supernovae. Thus, the
necessity for more focused shock wave data becomes clear. Unfortunately, such data will likely be
available only in pressure regimes that are orders of magnitude smaller than the relevant pressures in a
supernova. Exactly how to proceed in the face of this discrepancy is perplexing. ALEGRA has no
magic bullet solution - we simply stress that a reasonable validation process must at least direct
rigorous attention to these issues. This illustrates why we believe that a requirement for any validation
activity is that there be experimental attempts to refite the predictions of the code, as well as to
confirm them.

The same issues of weight and performance that we raised in regard to verification problems for
ALEGRA are relevant to validation problems. They are more complex to understand, however. In
particular, there are often significant problems in coming to a consensus as to how accurately a given
set of experimental data may have been modeled. Even if the comparison of ALEGRA with
experimental data could be reduced to some kind of numerical metric, it would be misleading to think
of such a metric strictly as an issue of numerical accuracy. This is because there are many
uncertainties that enter complicated calculations which seek to model complex experiments. We will
touch on uncertainty quantification below as an important technology for validation.

Uncertainty Quantification

Uncertainty quantification for ALEGRA validation parallels the use of sensitivity analysis for
verification. Simply put, uncertainty quantification has two problems that it studies. First, given
model (code) uncertainties, what are the quantified uncertainties in the important outputs of
simulations? This is sometimes referred to as the forward prediction problem. The uncertainties
referred to are almost always treated using stochastic schemes of inference (in other words, statistical
inference). Notice that one interesting and immediate consequence of thk is that quzdity or accuracy
assessments of the comparison of code results with data become stochastic. The implications of this
for code validation in general, and ALEGRA validation in particular, are beyond the scope of this
paper. However, realization of this fact is one of the prime reasons that we are beginning our

18

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Cotildence in ASCI Scientific Simulations

implementation of sensitivity analysis capability in ALEGRA with a statistical approach. The same
tools can be used to study forward prediction problems and we intend to use these tools in fhture
validation studies for ALEGRA.

Second, one might wish to evaluate, and perhaps minimize, code uncertainties on the basis of
knowledge of output uncertainties (as might be revealed in comparisons with experimental data). This
is sometimes called the backward prediction problem, and is considered to be a harder problem than
forward prediction. It is also of great significance when we concern ourselves with extracting the
maximum specific validation content for physics treatments in a code from a class of integral data. It
is safe to say that detailed thinking about the backward prediction problem in thk context is essentially
non-existent. Dealing with such problems is most likely years away from inclusion in formal
ALEGRA validation activities.

h example of a recent validation study - related to ordnance applications of ALEGRA - can be found
in [Carrol197]. This study took about six months to pertlorm. Considerable effort was involved in
attempting to assess the quality and uncertainty of the experimental data sets that were used, and the
quantitative meaning of the code comparisons with the data. This task was not facilitated by the fact
that the experimenter who performed the experiments was unavailable. In addition we have not yet
addressed the issue of how to actually peer review this work in a formal sense. Finally, none of the
uncertainty quantification issues discussed above was treated in this paper. Our confidence in the
ability of ALEGRA to simulate ordnance velocity long-rod penetrator events into monolithic metal
definitely improved as a result of the study, however. This study has been followed by similarly
complex studies of the ability of ALEGRA to successfully model data from explosively formed
projectile experiments, as well as shaped-charge jet tests.

Planned ASCI V&V Activities and Final Observations

We are just getting started with the effort to establish validation and verification methodologies that
can span all the ASCI application development efforts. Some of our codes like ALEGRA have
developed V&V plans as part of their code development activities. In the coming year a new focused
V&V Program will come on line to support V&V activities that go beyond the resources and
responsibility of the individual ASCI application development teams.

Planned ASCI V&V Activities

Effective V&V Planning

Because V&V is so crucial to the development of high quality, predictive ASCI codes, it is important
for each application development project to have a well-documented V&V process appropriate to the
soflware development task. This process should address V&V activities that occur at all stages of
software development, as illustrated in Figure 3. The accompanying V&V plan should at a minimum
describe a clear set of V&V goals, explain the various techniques and tools to accomplish V&V
(especially for verification), and describe the data fi-om joint computational/experimental activities
needed for code validation. A minimum goal of the V&V program should be to ensure that all code
projects have appropriately developed V&V plans.

19

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Conlkleme in ASCI Scientific Simulations

Evaluation of Current Standards

There is a need to re-evaluate common software engineering practices for application to scientific
simulations that will be run on hierarchical, distributed memory, MP ASCI computer systems. An
assessment of soflware development standards and their applicability to the ASCI is vital to ensuring
that the codes are indeed being “built right.” Examples of relevant software engineering practices
include, but are not limited to those described in [AL4.A98], @lMS096], [IEEE82], and [Ginsberg95].

Process Improvement Tools and Techniques

The outcome of this activity should be a determination of tools, techniques, benchmarking practices
and methodologies that are generally applicable to the verification of ASCI-scale scientific
simulations. Each code development team could then integrate these high level standards and
methodologies for their specific application.

For validation, process improvement means defining protods for code usage, specifying techniques
for comparing simulation results to validation data along with their associated uncertainties and errors,
and specifying validation data requirements to measure the predictive nature of the codes. A key role
for the V&V Program will be to collect, organize, and communicate our needs for validation data to
the organizations and programs that own the validation data.

Independent Technical Reviews

While it is expected that the ASCI code projects will incorporate V&V into their own development
processes, an additional measure of independence is necessary. One means for achieving this
independence is through a course of program-wide soilware technical reviews. These would involve
a series of walkthroughs, reviews, and inspections, as outlined above, and it might involve, for
example, cross-lab peer review or even external review.

Challenge Problems

Challenge problems will be needed to exercise the predictive capabilities of the various ASCI
scientific simulations. The definition of challenge problems and the development of a process for
running challenge problems will require input from code developers, simulation users and
experimentalists from the three DOE defense program national laboratories. The capabilities of new
DOE SSP experimental facilities will be factored into the ability to collect test data in new physical
regimes. These facilities, combined with opportunities to carry out tests on existing facilities with new
materials in new configurations offers many opportunities for staging pre-test predictions followed by
collection of validation data.

Final Observations

We conclude with some observations on the relationship of validation to confidence in simulations.
First, to claim some rigorous content from a validation problem, we must avoid the use of research
models in our code. By definitio~ research models are not validated. This in turn implies rather tight
control on the kinds of models that will ever be allowed in a valiabted code. If the code is accredited
for a specific applicatio~ this also likely means that no new models of any kind can be allowed in the
code without a complete repeat of the accreditation process. This is difficult to enforce in a code that
is designed to implement advanced technologies, whether model, algorithm, or programming based.

20

HICSS-32, Software Teelmology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

Second, we ask whether a valiahted code in some sense guarantees reliable simulations. The obvious
answer is no, because the analyst who uses the code may make an error in pre-processing, code
executiow or post-processing. This implies that if the goal of validation is to improve our confidence
in the reliability of a code calculation then formal steps must be taken to deal with the fact that
humans perform these calculations. The answer to this problem is not for a code project to claim that
they are not responsible for incorrect use of the code. We generically refer to this issue as “calculation
protocols.” Two effkctive techniques to include within calculation protocols are, the use of formal
input inspections (identical to software inspections, but applied to user code inputs) and formal
training. A third highly likely technique is to use multiple users for really important calculations,
followed by elicitation methodologies for establishing a consensus analysis.

Acknowledgments

The authors developed much of this paper in conjunction with planning for a new focused ASCI effort
in V&V, This planning activity afforded the authors many opportunities for exchange of ideas with
colleagues from Lawrence Livermore, Los Alamos and Sandia National Laboratories. Specific
individuals who have contributed to the development of ideas contained in this paper include: Tom
Adams, Don McCoy, Juan Mez~ Bob Thomas, Bill Oberkamp~ Paul Hommert, Cynthia Nitta,
Richard Klein and Gary Carlson. Responsibility for the formulation and presentation of ideas remains
with the authors and do not constitute official policy statements of either the U. S. Department of
Energy or Sandia National Laboratories. This work is supported by the U. S. Department of Energy,
Sandia National Laboratories under contract number DE-AL04-94AL8500.

References

[AIAA98] American Institute of Aeronautics and Astronautics, Standards Department, Guiak for the
Ver@cation and Valiahtion of Computational FluidDyamics Simulations, MM G-077-1998, 1998.

[Ang93] Ang, James A., Bruce D. Hansche, Carl H. Konrad, William C. Swea~ Scott G. Gosling,
and Randy J. Hlckma~ “Pulsed Holography for Hypervelocity Impact Diagnostics”, International
Journal of Impact Engineering, Vol. 14, 1993, pp. 13-24.

~oehm81] Boehm, Barry W., So@are Engineering Economics, Prentice-Hall, Englewood Cliffs,
NJ, 1981, p.37.

[Carrol197] Carroll, Daniel E., Eugene S. Hertel, Jr., and Timothy G. Trucano, “Silsby Long-Rod
Calculations,” Sandia National Laboratories, SAND97-2765., 1997.

~MS096] Office of the Director of Defense Research and Engineering, Ver@cation, Valiahtion,
andAccreditation (VV&A) Recommenakd Practices Guid2, Defense Modeling and Simulation Office,
Washington, DC., November 1996.

[Ginsberg95] Ginsberg, Mark P., “Process Tailoring and the Software Capability Maturity Model,”
Carnegie Melon University Sofiware Engineering Institute Technical Report CMU/SEI-94-TR-024,
1995.

21

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

Confidence in ASCI Scientific Simulations

[Gusta&on98] GustafsoL John, “Computational Verifiability and Feasibility of the ASCI Progr~”
IEEE Computational Science andEnp”neering, Vol. 5, No. 1: January-March 1998, pp. 36-45.

[Gusterson96] Gustersoq Hugh Nuclear Rites: A Weapons I.doratory at the End of the Cold Wm,
University of California Press, Berkeley, 1996.

~atton95] llatto~ Les, Sl@erC: Developing SofWareforHigh-Integrity and Sa$e@Critical Systems,
McGraw-Hill, London, 1995.

~atton97] HattoL Les, “The T Experiments: Errors In Scientific Software,” IE= Computational
Science andEngineering, Vol. 4, No. 2: April-June 1997, pp. 27-38.

~enzinger96] Henzinger, Thomas A. “The theory of hybrid automata,” Proceedings of the 1lth
Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278-292.

[IEEE82] IEEE Standard for Software Verification and Validation Plans, IEEE Standards Board,
1982.

~nepel193] Knepell, Peter L. and Deborah C. Arangno, Simulation Validiztion: A Conjaknce
Assessment Methodology, IEEE Computer Society Press, Los Alamitos, 1993.

~arzelere98] Larzelere, Alexander R., “Creating Simulation Capabilities,” IEEE Computational
Science andEng”neering, Vol. 5, No. 1: January-March 1998, pp. 27-35,

~cMillan96] Private communication with Charles McMillan, Lawrence Liverrnore National
LaboratoV, 1996.

[0’Neil197] O’Neill, Don, “Software Inspections,” So~are Technology Review, Sofiware
Engineering Institute, Carnegie Mellon University, Pittsburg~ PA. June 1997, pp. 353-359.

[Ould86] Ould, Martyn A. and Charles Unwi~ eds., Testing in So@are Development, The British
Computer Society Monographs in Informatics, Cambridge University Press, Cambridge, 1986.

~etroski85] Petroski, Henry To Engineer is Human: The Role of Failure in Successjid Design, St.
Martin’s Press, New York 1985.

~ationa198] See http://www.rational.com, Rational Soflware Corp., Boulder, CO, 1998.

[Sanders94] Sanders, Joc and Eugene Curran, So~are Quality, Addison-Wesley, Reading, 1994.

[Summers96] Summers, Randall M., James S. Peery, Michael W. Wong, Eugene S. Hertel, Jr.,
Timothy G. Trucano, and Lalit C. Chhabildas, “Recent Progress In ALEGRA Development and
Application to Ballistic Impacts,” in Proceedings of the 1996 Hypervelocity Impact Symposium, to be
published in International Journal of Impact Engineering, 1996.

[Tong97] Tong, Charles H. and Juan C. Meza, “DOOMSDACE: A Distributed Object-Oriented
Software System with Multiple Samplings for the Design and Analysis of Computer Experiments,”
Sandia National Laboratones draft report, 1997

[Wilson96] Wilson, Gregory V., “What Should Computer Scientists Teach to Physical Scientists and
Engineers?,” IEEE Computational Science andEn~”neering, Vol. 3, No. 2: Summer 1996, pp. 46-55.

22

HICSS-32, Software Technology Track
MiniTrack-8 Parallel and Distributed Simulation

